Heat-labile enterotoxin promotes Escherichia coli adherence to intestinal epithelial cells.

نویسندگان

  • Amber M Johnson
  • Radhey S Kaushik
  • David H Francis
  • James M Fleckenstein
  • Philip R Hardwidge
چکیده

Given recent evidence suggesting that the heat-labile enterotoxin (LT) provides a colonization advantage for enterotoxigenic Escherichia coli (ETEC) in vivo, we hypothesized that LT preconditions the host intestinal epithelium for ETEC adherence. To test this hypothesis, we used an in vitro model of ETEC adherence to examine the role of LT in promoting bacterium-host interactions. We present data demonstrating that elaboration of LT promotes a significant increase in E. coli adherence. This phenotype is primarily dependent on the inherent ADP-ribosylation activity of this toxin, with a secondary role observed for the receptor-binding LT-B subunit. Rp-3',5'-cyclic AMP (cAMP), an inhibitor of protein kinase A, was sufficient to abrogate LT's ability to promote subsequent bacterial adherence. Increased adherence was not due to changes in the surface expression of the host receptor for the K88ac adhesin. Evidence is also presented for a role for bacterial sensing of host-derived cAMP in promoting adherence to host cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glucose Significantly Enhances Enterotoxigenic Escherichia coli Adherence to Intestinal Epithelial Cells through Its Effects on Heat-Labile Enterotoxin Production

The present study tested whether exposure of enterotoxigenic Escherichia coli (ETEC) to glucose at different concentrations in the media results in increased bacterial adherence to host cells through increased heat-labile enterotoxin (LT) production, thereby suggesting the effects are physiological. Porcine-origin ETEC strains grown in Casamino acid yeast extract medium containing different con...

متن کامل

Electron Acceptors Induce Secretion of Enterotoxigenic Escherichia coli Heat-Labile Enterotoxin under Anaerobic Conditions through Promotion of GspD Assembly.

Heat-labile enterotoxin (LT), the major virulence factor of enterotoxigenic Escherichia coli (ETEC), can lead to severe diarrhea and promotes ETEC adherence to intestinal epithelial cells. Most previous in vitro studies focused on ETEC pathogenesis were conducted under aerobic conditions, which do not reflect the real situation of ETEC infection because the intestine is anoxic. In this study, t...

متن کامل

An LTB-entrapped protein in PLGA nanoparticles preserves against enterotoxin of enterotoxigenic Escherichia coli

Objective(s): Enterotoxigenic Escherichia coli (ETEC) is known as the most common bacterial causes of diarrheal diseases related to morbidity and mortality. Heat-labile enterotoxin (LT) is a part of major virulence factors in ETEC pathogenesis. Antigen entrapment into nanoparticles (NPs) can protect them and enhance their immunogenicity.Materials and Methods: In the present study, recombinant L...

متن کامل

Enterotoxigenic Escherichia coli Flagellin Inhibits TNF-Induced NF-κB Activation in Intestinal Epithelial Cells

Enterotoxigenic Escherichia coli (ETEC) causes childhood diarrhea in developing countries. ETEC strains produce the heat-labile enterotoxin (LT) and/or heat-stable enterotoxins (ST) and encode a diverse set of colonization factors used for adherence to intestinal epithelial cells. We previously found that ETEC secretes a heat-stable protein we designated as ETEC Secreted Factor (ESF) that inhib...

متن کامل

Action of Escherichia coli enterotoxin: adenylate cyclase behavior of intestinal epithelial cells in culture.

Heat-labile enterotoxin preparations obtained from two enteropathogenic strains of Escherichia coli of porcine and human origin were shown to stimulate adenylate cyclase activity of human embryonic intestinal epithelial cells in culture. Comparable results were also obtained when cholera toxin was used. The degree of enzyme stimulation was proportional to the concentration of enterotoxin. Simil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 191 1  شماره 

صفحات  -

تاریخ انتشار 2009